Analytical Mechanics: Worksheet 5

Nonholonomic constraints

Christophe De Beule (christophe.debeule@gmail.com)

1 Theory

Consider a mechanical system with Lagrangian L = L(q, ¢,t) subject to a constraint

c1(g;1)oq1 + -+ - + ¢n(q, 1)dgn = 0, (©)
where ¢, are functions of the generalized coordinates ¢ = {q1,...,¢n} and time ¢t. If these
functions can be written as
of
Cz(Qvt) = aiqia

then the constraint is integrable and can be expressed as f(q,t) = 0 (holonomic). However,
if this is not the case then the constraint is called non-integrable; it cannot be reduced to a
constraint on coordinates alone. Equation (V) is a special case of a Pfaffian constraint:

Z Ci(Q: t)Qz + CO(Qv t) = 07

i

with ¢g = 0. Non-integrable Pfaffian constraints are a subset of general nonholonomic con-
straints f(q, ¢,t) = 0 that are linear in the generalized velocities. An example of a non-Pfaffian
constraint is a constant-speed constraint, or inequalities, called unilateral constraints f(q,t) > 0,
e.g. a mass that slides off a sphere with » > R.

A nonholonomic constraint of the form (©) can be accounted for using the method of Lagrange
multipliers. Similar as before, we obtain

SL_ 0L d oL
6q¢;  Ogqi dtOg

which is equivalent to a free variational problem with
SL=06L+ \(c18q1 + -+ + cndqn) -

In this worksheet, we consider rolling without slipping. This is a typical example of a non-
integrable constraint that involves terms linear in the velocities. Another example is an ice
skate, where motion is constrained along the skate blade without sideways slipping.

2 Rolling disk

We consider an upright coin that rolls without slipping down a slope, see Figure 1. The con-
figuration of the coin is determined by the coordinates of the contact point x and y and the
constraint of rolling without slipping.

As shown in the figure, 6 is the heading angle of the coin, defined here as the angle between
the y axis and the velocity ¢ of the contact point, and ¢ is the rotation angle of the coin around
its axle. Due to the rolling constraint, we cannot express x and y as functions of § and ¢. We can
understand this because x and y generally do not return to themselves after a closed path in the
(0, ¢) plane. Instead, they also depend on the history of the system. It is therefore impossible to
describe the coin with only two coordinates, even though there are only two degrees of freedom
in this problem. This is a general feature of nonholonomic systems.



Figure 1: A coin rolls from a slope « without slipping. We also assume that the coin stays
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(b)

(2)

perpendicular to the surface of the slope as it rolls. As the coin rolls, it rotates
through an angle ¢ about its own axis. In addition, the coin can turn by a heading
angle 6 about the axis through the contact and perpendicular to the slope.

Determine the nonholonomic constraints of this system by expressing éz and dy in terms
of the angles 0 and ¢ and their variations. Determine the functions ¢;(q,t).

Calculate the kinetic energy. It contains both translational (z and y) and rotational
contributions (6 and ¢). For the latter, you need to calculate the moment of inertia
around an axis Zy:

Iy = /d?’ra(F) (r* — 7).

Assume that the coin has no thickness and a uniform mass density o. Determine a relation
between I, and 1.

Calculate the potential energy and determine the Lagrangian. Show that we require three
coordinates: 0, ¢, and y, even though there are only two degrees of freedom.

Use a Lagrange multiplier A to include the rolling constraint on y to the variation of the
action 4.5 and obtain the equations of motion.

Find an expression for A and solve the equations of motion for 8(¢) and ¢(t).

Substitute 6(¢) and ¢(¢) into the expression for # and . You can obtain the latter from
the rolling constraint, taking a variation that coincides with the change over a time dt.

Integrate and find z(t) and y(t).
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