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1 Fourier transform of the Yukawa potential

Calculate the three-dimensional Fourier transform of the Yukawa potential

V (q) =

∫
d3r V (r) e−iq·r, V (r) =

e2

r
e−µr,

and take the limit µ→ 0 to obtain the regularized Fourier transform of the Coulomb potential.
Hint: Use spherical coordinates with the z-axis pointing along q to perform the integration.

2 Free electrons

The free electron Hamiltonian can be written as

Ĥ0 =
∑
σ=↑,↓

∫
V
ddr ψ̂†

σ(r)

[
p̂2

2m
+ V (r)

]
ψ̂σ(r),

where p̂ = −iℏ∇. The field operators obey the anti-commutation relations {ψ̂σ(r), ψ̂
†
σ′(r′)} =

δσσ′δ(r − r′) and {ψ̂σ(r), ψ̂σ′(r′)} = {ψ̂†
σ(r), ψ̂

†
σ′(r′)} = 0.

(1) Consider the Fourier transform

ψ̂σ(r) =
1√
V

∑
k

eik·r ĉkσ,

where ĉ†kσ and ĉkσ are creation and annihilation operators in momentum space. Assume
the volume V = Ld is a d-dimensional cube with sides L and use periodic boundary
conditions ψ̂σ(r + Lei) = ψ̂σ(r) (i = 1, . . . , d) to find the allowed momenta. Also find an

expression for the anti-commutation relations {ĉkσ, ĉ†k′σ′}, {ĉkσ, ĉk′σ′}, and {ĉ†kσ, ĉ
†
k′σ′}.

(2) For the remainder of this exercise we put V (r) = 0. Use the above result to obtain a

representation of Ĥ0 in terms of ĉkσ and ĉ†kσ.

(3) Calculate the non-interacting ground state energy

E0 = ⟨Ω| Ĥ0 |Ω⟩ ,

where |Ω⟩ =
∏

|k|≤kF ,σ ĉ
†
kσ |0⟩ is the Fermi sea with kF the Fermi wave number. Perform

the calculation for d = 1 and d = 3. Hint:
∑

k
L→∞−→

(
L
2π

)d ∫
ddk.

3 Lattice version of the interaction Hamiltonian

The interaction Hamiltonian

V̂ee =
1

2

∑
σ,σ′

∫
ddr

∫
ddr′ Vee(r − r′)ψ̂†

σ(r)ψ̂
†
σ′(r

′)ψ̂σ′(r′)ψ̂σ(r),

1



where Vee(r − r′) is the interaction potential, can also be written in terms of Wannier field

operators ĉiσ and ĉ†iσ through a unitary transformation

ψ̂σ(r) =
∑
i

ϕRi(r) ĉiσ,

where the Wannier function ϕRi(r) is localized around the Bravais lattice site Ri and the set
of Wannier states {|ϕRi⟩} form an orthonormal basis of the single-particle Hilbert space. The
result is given by

V̂ee =
∑
σ,σ′

∑
ii′jj′

Vii′jj′ ĉ
†
iσ ĉ

†
i′σ′ ĉj′σ′ ĉjσ.

(1) Find an expression for Vii′jj′ in terms of the Wannier functions.

(2) Direct terms Vii′ii′ ≡ Vii′ couple density fluctuations at sites i ̸= i′. Determine Vii′ for a

contact potential Vee(r) = λδ(r) and wave functions1 ϕRi(r) =
e−(r−Ri)

2/(2∆2)

(∆
√
π)

d , for

(i) an on-site interaction i = i′;

(ii) a nearest-neighbor interaction in a square lattice (d = 2) with lattice constant a.

(3) In the limit ∆ ≪ a, the wave functions are strongly localized on the sites and the on-
site interaction Vii ≡ U/2, called the Hubbard interaction, is the dominant contribution.
Determine the interaction Hamiltonian V̂ee in this approximation.

4 Useful identities

Consider two operators A and B. The Baker-Hausdorff theorem is given by

e−BAeB =
∞∑
n=0

[A,B]n
n!

= A+ [A,B] +
1

2
[[A,B], B] + . . . ,

where [A,B]n+1 ≡ [[A,B]n, B] and [A,B]0 ≡ A. Now define C ≡ [A,B] and assume that C
commutes with A and B.

(1) Use the Baker-Hausdorff theorem to show that e−BAeB = A+ C.

(2) Consider the operator-valued function T (s) = esAesB (s ∈ R) and use (1) to write

dT (s)

ds
= T (s)P(s),

where P(s) is to be found. Solve this differential equation by inspection, with the boundary
condition T (0) = 1. Use your result to prove

eAeB = eA+B+C/2 = eA+BeC/2,

where the last equality follows from [A+B,C] = 0.

(3) First use (1) to prove by induction that e−BAneB = (A+ C)n, and then show that

e−Bf(A)eB = f(A+ C).

(4) Use (3) to show that eAeB = eBeAeC .

1These functions are not strictly Wannier functions because they are not orthogonal. Wannier functions can be
constructed from a superposition of Gaussians, but this is beyond the scope of the exercise.
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