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Consider the following integral:
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where A is a positive definite real symmetric N-dimensional matrix, ¢ > 0, and N > 0 is an
integer. For N = 1, with d = A > 0, the integral becomes

L(At) = \/jerf(t\/:i).

Next, we consider the case N > 1. First, we transform to new coordinates y by diagonalizing
A:

A=B'DB, y = Bz,
where D is a diagonal matrix with the eigenvalues of A which are guaranteed to be positive,

and where the rows of the orthogonal matrix B are the corresponding eigenvectors. Note that
this transformation has unit Jacobian, |det B| = 1. The integral becomes
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where d; are the elements of D, i.e. the eigenvalues of A. Because © = By, we have
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where b;, is the element of the matrix B at row ¢ and column k. The bounds of the integrals
over yy are therefore given by
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The integral over yn then becomes
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To solve the remaining integrals, we use the following result (see Appendix)
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We solve the total integral by solving the integral over y; first, then yo, and so on, until yy_1.
The corresponding parameters for the integral over y1, yo, and y3 are given by
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where x, = £t for the first and second part in (1)), restrictively. The a; can be simplified by
nothing that
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which gives
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where again x; = +t. Finally, the integral becomes
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where we repeatedly used (2), erf(—xz) = —erf(z), and
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Other integral

Here, we prove Eq. . Consider the following integral
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where we used the definition of erf(z) and the substitution t = (az + b)y. The exponent is
given by the negative of
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Naturally, we then perform the substitution
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Now we can solve the integral over /. The odd part of the integrand gives a vanishing integral

and we obtain
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The final integral can be solved with the substitution
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and we finally obtain

Other method

Previously, we found
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Note, however, that
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with @’ is the (N — 1)-dimensional vector formed by removing xj from @, A’ is the matrix
formed if the k-th row and column are removed from A, and j has coefficients

where we used the fact that A is symmetric. Note that any principal submatrix of A is also real
symmetric and positive definite. Because
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the final integral becomes
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Comparing this result with our previous result, we need to prove that
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To this end, we first note that
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because det A’ is the cofactor of Ay,. Furthermore, we find
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where Mj; is the (j,7) minor of A’. We arrive at the same result, thusly.



