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1 Anomalous velocity and the Hall conductivity

In order to calculate the Hall conductivity for a crystalline solid, we need to consider the response
of the electrons in the crystal to a constant electric field. We can account for the electric field in
a translational-invariant way with a homogeneous time-dependent vector potential A, so that
(in Gaussian units)

_ 104
c Ot
The Hamiltonian becomes ) )
e
H=—— { —A(t } Vir),
5 [P )| +V(r)

where V() is the crystal potential. The wave function can be written as (Bloch’s theorem)

Y(r,t) = eiq'Tuq(r, t),

where ugq(7,t) is a cell-periodic time-dependent Bloch function. Its time dependence is governed
by the Bloch Hamiltonian:

H(q,t) = e 9T H(t)e' " = H(k),

where k = k(t) is the gauge-invariant crystal momentum
e

k=gq+ A (1)

Explicitly, one finds
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H(k) = + V(r).

Under a gauge transformation,

Y(r,t) = e R Xy 1)
A(r,t) > A+ Vyx

H(g,t) — e—iq~T+%x(r)Heiq-r—ﬁx(T)’
so that k remains invariant. The velocity operator is given by
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v(k)=e¢ "I [H,r]e9" = ﬁVkH(k)

In order to find the response of the system to an applied electric field, we consider the time
dependence of the Bloch functions,

L d
ih—y [u(t)) = H(k(t)) [u(t), (2)

The general solution is expressed in terms of the instantaneous eigenstates
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u(t)) = en(t)e™ Dln(t)), 9n(t)=h/t dt'en(t'),
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where
H)[n(t)) =en®)[n(t)),  (n(t)|lm(t)) = Snm. (3)

Furthermore, we assume that the spectrum is nondegenerate (no band crossings). Substituting
this expression into the time-dependent Schrodinger [Eq. (2)] gives a system of differential
equations that determine ¢, (t),

Zc e’ m\n) (4)

Taking the time derivative of Eq. (3) gives
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Up to this point, all results are exact. In the adiabatic approximation, we assume that
(m|H|n)
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which means that H changes slowly compared to the level spacing. We obtain
ém(t) = —cm(m|m).
In our case, the time dependence of the Bloch Hamiltonian is implicit,
H=k -ViH=—¢E v,

and the adiabatic approximation corresponds to an electric field that is small compared to the
level spacing. The solution is given by

em(t) = cm(0) exp (- /0 t dt'<mym>> .

So if the system is initially in an eigenstate |n) at t = 0, we have ¢;,(0) = 0ppm, and it will
remain the same apart from a phase. If the adiabatic evolution is cyclic, this phase becomes
gauge-invariant (Berry phase).

For a constant electric field, the adiabatic evolution is not cyclic and so we can safely neglect
this phase. To obtain a better approximation, we substitute this result in Eq. (4) for m # n,

Cm(t) = _ei(en_enl)<m|h>>
with the approximate solution,
em(t) = —iheiw"_em)7<mm> .
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where we neglected all terms with more than one time derivative. In lowest order the eigenstate
becomes
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The expectation value of the velocity operator in the perturbed state is given by

(n(k)|ViH|m(k))(m(k)[n(k))
en(k) — em(k) '
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Again by taking a derivative of equation (3), the second term in the expression for v, becomes

2Im Y (Ven|m) (m|n) = 2Im(Vyni). (5)

Here we included n in the summation because this term is real so it does not contribute to the
sum. Furthermore from (1),
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and (5) becomes (component wise)
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where F;; are the components of the Berry curvature. This equation can be rewritten in terms
of the Berry field strength which is defined as

1
Qk = §€kannm

Contraction with a permutation symbol yields

(5767 — 6767 Frum = Fiy,
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because Fj; = —Fj;. Substituting in (6) gives,

1
v, = ﬁvken—%(E X Q).

This is an important result. We find that the electric field produces a transverse velocity in the
adiabatic limit. If the Fermi level is in the band gap, the ground-state current density at zero

temperature is given by
d’k
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where the summation runs over all occupied bands, and the integral is over the entire Brillouin
zone, because we consider an insulator. Hence, the longitudinal part vanishes and the Hall
conductivity is given by
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oy = % > Cn  Cn= %/koz Py,

where C,, is the Chern number of the n-th band.

2 Chern number for a square lattice

The Berry curvature can be written in terms of the Berry connection (this can be seen as a
gauge field in momentum space),

Ay =i(n| g, In)

Fij = 8k1AJ — akAl
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Figure 1: The Brillouin zone (BZ) of a square lattice. The BZ has the topology of a torus such
that the four corners represent the same state.

For a square lattice with unit lattice constant, the Chern number can be written as

1 27 27
Co= o /0 ks /0 dky (00, Ay — O, As)

The integral becomes

2w 2
by [A, (27, k) = 4,0, k)] — [ dk, [As(ke27) — Ay (ks, )]
0 0

States at (kg,0) and (kg,27), and states at (0, k,) and (2, k,) represent the same state up to

a momentum-dependent phase factor,
In(ky, 2m)) = e0=e) |n(k,, 0)) ™
|TL(27T, ky)) = eiey(ky) |’I’L(0, ky» ’

which implies

Ay kg, 2m) = i (n(ky, 27)| Ok, In(ks, 27)) = —0Ok, 02 (ks) + Az (kz, 0),
Ay(2m, ky) =i (n(27, ky)| Ok, [n(27, ky)) = —Ok, 0y (k) + Ay(0, ky).
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The Chern number becomes
1
2

In the four corners of the Brillouin zone, equation (7) gives

Co = — [0,(0) — 6,(27) + 02(27) — 0(0)]

which implies that
In(2m, 27)) = €=+ Cm) 10, 0)) = (0 +0:2m) |0, 0)) .
This can only be true if
0,(0) — 0,(27) + 6,(2m) — 0,(0) = 27y,

so that the Chern number is given by an integer C,, = v. The Hall conductivity of a single
fully-occupied band is quantized:
Ory = ve*/h.
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