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1 Anomalous velocity and the Hall conductivity

In order to calculate the Hall conductivity for a crystalline solid, we need to consider the response
of the electrons in the crystal to a constant electric field. We can account for the electric field in
a translational-invariant way with a homogeneous time-dependent vector potential A, so that
(in Gaussian units)

E = −1

c

∂A

∂t
.

The Hamiltonian becomes

H =
1

2m

[
p+

e

c
A(t)

]2
+ V (r),

where V (r) is the crystal potential. The wave function can be written as (Bloch’s theorem)

ψ(r, t) = eiq·ruq(r, t),

where uq(r, t) is a cell-periodic time-dependent Bloch function. Its time dependence is governed
by the Bloch Hamiltonian:

H(q, t) = e−iq·rH(t)eiq·r ≡ H(k),

where k = k(t) is the gauge-invariant crystal momentum

k = q +
e

ℏc
A. (1)

Explicitly, one finds

H(k) =
(p+ ℏk)2

2m
+ V (r).

Under a gauge transformation,

ψ(r, t) → e−
ie
ℏcχ(r)ψ(r, t)

A(r, t) → A+∇χ

H(q, t) → e−iq·r+ ie
ℏcχ(r)Heiq·r−

ie
ℏcχ(r),

so that k remains invariant. The velocity operator is given by

v(k) = e−iq·r [H, r] eiq·r =
1

ℏ
∇kH(k).

In order to find the response of the system to an applied electric field, we consider the time
dependence of the Bloch functions,

iℏ
d

dt
|u(t)⟩ = H(k(t)) |u(t)⟩ , (2)

The general solution is expressed in terms of the instantaneous eigenstates

|u(t)⟩ =
∑
n

cn(t)e
iθn(t)|n(t)⟩, θn(t) = −1

ℏ

∫ t

t0

dt′εn(t
′),
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where
H(t)|n(t)⟩ = εn(t)|n(t)⟩, ⟨n(t)|m(t)⟩ = δnm. (3)

Furthermore, we assume that the spectrum is nondegenerate (no band crossings). Substituting
this expression into the time-dependent Schrödinger [Eq. (2)] gives a system of differential
equations that determine cm(t),

ċm(t) = −
∑
n

cne
i(θn−θm)⟨m|ṅ⟩. (4)

Taking the time derivative of Eq. (3) gives

ċm(t) = −cm⟨m|ṁ⟩ −
∑
n̸=m

cne
i(θn−θm) ⟨m|Ḣ|n⟩

εn − εm
.

Up to this point, all results are exact. In the adiabatic approximation, we assume that∣∣∣∣∣⟨m|Ḣ|n⟩
εn − εm

∣∣∣∣∣≪ 1,

which means that H changes slowly compared to the level spacing. We obtain

ċm(t) = −cm⟨m|ṁ⟩.

In our case, the time dependence of the Bloch Hamiltonian is implicit,

Ḣ = k̇ · ∇kH = −eE · v,

and the adiabatic approximation corresponds to an electric field that is small compared to the
level spacing. The solution is given by

cm(t) = cm(0) exp

(
−
∫ t

0
dt′⟨m|ṁ⟩

)
.

So if the system is initially in an eigenstate |n⟩ at t = 0, we have cm(0) = δnm and it will
remain the same apart from a phase. If the adiabatic evolution is cyclic, this phase becomes
gauge-invariant (Berry phase).
For a constant electric field, the adiabatic evolution is not cyclic and so we can safely neglect

this phase. To obtain a better approximation, we substitute this result in Eq. (4) for m ̸= n,

ċm(t) = −ei(θn−θm)⟨m|ṅ⟩,

with the approximate solution,

cm(t) = −iℏei(θn−θm) ⟨m|ṅ⟩
εn − εm

.

where we neglected all terms with more than one time derivative. In lowest order the eigenstate
becomes

|n⟩ → |n⟩ − iℏ
∑
m̸=n

|m⟩ ⟨m|ṅ⟩
εn − εm

.

The expectation value of the velocity operator in the perturbed state is given by

vn(k) =
1

ℏ
∇kεn(k) + 2 Im

∑
m̸=n

⟨n(k)|∇kH|m(k)⟩⟨m(k)|ṅ(k)⟩
εn(k)− εm(k)

.
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Again by taking a derivative of equation (3), the second term in the expression for vn becomes

2 Im
∑
m

⟨∇kn|m⟩ ⟨m| ṅ⟩ = 2 Im⟨∇kn|ṅ⟩. (5)

Here we included n in the summation because this term is real so it does not contribute to the
sum. Furthermore from (1),

d

dt
= k̇ · ∇k = − e

ℏ
E · ∇k,

and (5) becomes (component wise)

vn,i =
1

ℏ
∂kiεn − ie

ℏ
(
⟨∂kin| ∂kjn⟩ −

〈
∂kjn

∣∣ ∂kin⟩)Ej =
1

ℏ
∂kiεn − e

ℏ
Fn,ijE

j , (6)

where Fij are the components of the Berry curvature. This equation can be rewritten in terms
of the Berry field strength which is defined as

Ωk =
1

2
εknmFnm.

Contraction with a permutation symbol yields

εijkΩ
k =

1

2
εkijε

knmFnm =
1

2

(
δni δ

m
j − δmi δ

n
j

)
Fnm = Fij ,

because Fji = −Fij . Substituting in (6) gives,

vn =
1

ℏ
∇kεn − e

ℏ
(E ×Ωn) .

This is an important result. We find that the electric field produces a transverse velocity in the
adiabatic limit. If the Fermi level is in the band gap, the ground-state current density at zero
temperature is given by

Ji = −e
∑
n

∫
d2k

(2π)2
vn,i

=

(
e2

2πh

∑
n

∫
d2kFn,ij

)
Ej ,

where the summation runs over all occupied bands, and the integral is over the entire Brillouin
zone, because we consider an insulator. Hence, the longitudinal part vanishes and the Hall
conductivity is given by

σxy =
e2

h

∑
n

Cn, Cn =
1

2π

∫
d2kFn,xy,

where Cn is the Chern number of the n-th band.

2 Chern number for a square lattice

The Berry curvature can be written in terms of the Berry connection (this can be seen as a
gauge field in momentum space),

Ai = i ⟨n| ∂ki |n⟩
Fij = ∂kiAj − ∂kjAi.
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Figure 1: The Brillouin zone (BZ) of a square lattice. The BZ has the topology of a torus such
that the four corners represent the same state.

For a square lattice with unit lattice constant, the Chern number can be written as

Cn =
1

2π

∫ 2π

0
dkx

∫ 2π

0
dky

(
∂kxAy − ∂kyAx

)
.

The integral becomes∫ 2π

0
dky [Ay(2π, ky)−Ay(0, ky)]−

∫ 2π

0
dkx [Ax(kx, 2π)−Ax(kx, 0)] .

States at (kx, 0) and (kx, 2π), and states at (0, ky) and (2π, ky) represent the same state up to
a momentum-dependent phase factor,

|n(kx, 2π)⟩ = eiθx(kx) |n(kx, 0)⟩ ,
|n(2π, ky)⟩ = eiθy(ky) |n(0, ky)⟩ ,

(7)

which implies

Ax(kx, 2π) = i ⟨n(kx, 2π)| ∂kx |n(kx, 2π)⟩ = −∂kxθx(kx) +Ax(kx, 0),

Ay(2π, ky) = i ⟨n(2π, ky)| ∂ky |n(2π, ky)⟩ = −∂kyθy(ky) +Ay(0, ky).

The Chern number becomes

Cn =
1

2π
[θy(0)− θy(2π) + θx(2π)− θx(0)] .

In the four corners of the Brillouin zone, equation (7) gives

eiθx(0) |n(0, 0)⟩ = |n(0, 2π)⟩ ,
eiθx(2π) |n(2π, 0)⟩ = |n(2π, 2π)⟩ ,
eiθy(0) |n(0, 0)⟩ = |n(2π, 0)⟩ ,

eiθy(2π) |n(0, 2π)⟩ = |n(2π, 2π)⟩ ,

which implies that

|n(2π, 2π)⟩ = ei(θx(0)+θy(2π)) |n(0, 0)⟩ = ei(θy(0)+θx(2π)) |n(0, 0)⟩ .

This can only be true if

θy(0)− θy(2π) + θx(2π)− θx(0) = 2πν,

so that the Chern number is given by an integer Cn = ν. The Hall conductivity of a single
fully-occupied band is quantized:

σxy = νe2/h.
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