Quantum Mechanics: Worksheet 5

Scattering theory: partial waves

Christophe De Beule (christophe.debeule@gmail.com)

1 Partial-wave expansion of a plane wave

A plane wave with wave vector k = kZ can be expanded in partial waves as
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Find an expression for the coefficient A; using the orthogonality of the Legendre polynomials:
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Use any source to find a suitable integral representation of j;(kr) and solve for A;.

2 Method of partial waves

The method of partial waves consists of a convenient basis choice which separates the total
scattering problem into independent smaller problems.

In a scattering problem, we consider an incoming plane wave that scatters into outgoing
channels. In one dimension, we typically have two outgoing channels (reflected and transmitted).
In higher dimensions, there are an infinite amount of channels. However, one can often expand
the incoming and outgoing wave in a suitable basis to simplify the problem. For a spherically-
symmetric potential in particular, we can decompose a plane wave in contributions with definite
[ and m quantum numbers since L? and L, are conserved. These are called partial waves because
each represents a part of the plane wave. Partial waves are free-particle solutions in spherical
coordinates and are ideal for spherically-symmetric potentials because mixing of different partial
waves is forbidden by symmetry. Hence, outgoing partial waves do not lose any amplitude and
only pick up a phase because of current conservation (see Figure 1).
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Figure 1: Scattering of partial waves at a spherically-symmetric potential V(r). Only the
asymptotic form of the radial wave function is shown (exact for [ = 0).

The radial Schrodinger equation for a spherically-symmetric potential is given by
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where R;(r) is the radial wave function. For a constant potential, the solutions of (1) are the
spherical Bessel functions:

Ri(r) = ayji(qr) + bing(qr), q=+/2m(E-V)/h?,

where a; and b; are constants. The solution can also be expressed with spherical Hankel functions

hl(l) = ji +in; and hl@) = j; — tny, which are useful if ¢ becomes imaginary.



3 Spherical potential well

Consider a spherical potential well:
V(r)=-W6l(a—r), Vo > 0.

Before we investigate scattering, we consider bound states localized inside the well that have
discrete energies in the range —Vp < E < 0.

(a) Find an equation for the s-wave (I = 0) bound-state spectrum. For which values of V}
does a bound state exist? Compare this to the one-dimensional potential well. Hint:
substitute u(r) = rRo(r) to solve the radial equation.

(b) Now consider s-wave scattering (E > 0). Outside the well, the scattering state is
u(r) = sin (kr + 8g) oc ek — g2i%0 ik
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where 0g(k) is the phase shift of the outgoing s wave. The phase shift dp contains all the
information on scattering through the s-wave channel.

(¢) Find an expression for tan dp and calculate the s-wave cross section oy.
(d) Consider low-energy scattering and evaluate tan dy to order k2. In general, the phase shift

is small for low-energy scattering. When is this not the case and why?

4 Delta-shell scattering

Consider scattering by a d-shell potential:
V(r) =~6(r —a).
(a) Integrate the radial equation over a tiny spherical shell around r = a of thickness 2¢ in

the limit € — 0 to find the boundary condition on the derivative.

(b) Consider s-wave scattering and find an expression for So(k) = €2,

(¢) Look for the poles (zeros of the denominator) of Sy. Substitute k = v2mE /h = ix to get
an expression for the bound states. For what values of v does a bound state exist?
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(d) Evaluate the poles of Sy up to (m—m) and solve the resulting quadratic equation for ka.
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Show that the quasibound states evolve to confined states inside the shell for ‘ nf;

(e) Why do the poles have to lie in the lower half of the complex k-plane?

4
f) Expand the physical solution of the quadratic equation up to order R and find the
may
expressions for the resonance energy and width in lowest order.

Resonances Resonances correspond to sharp peaks in the cross section due to quasibound
states arising from reflections inside the scattering region. This effectively traps the incident
wave for a finite time, while it gradually decays to the continuum outside the scattering re-
gion, as it is slowly transmitted. Quasibound states have complex energies so they cannot be
normalizable, as they are eigenstates of the Hamiltonian. Nevertheless, they can contribute to
observable quantities by their proximity to the real axis. At resonance, a quasibound state is
almost degenerate with the continuum.
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