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1 Kubo formula

Starting from the Kubo formula, we want to obtain equation (5) of the seminal paper [1] by
Thouless, Kohmoto, Nightingale, and den Nijs (TKNN). For zero temperature and ω → 0, the
Kubo formula for the linear Hall conductivity of a two-dimensional periodic system gives

σH =
σxy − σyx

2

=
ie2

2πh

∑
εn<0<εm

∫
BZ

d2k
⟨n| ∂1Hk |m⟩ ⟨m| ∂2Hk |n⟩ − ⟨n| ∂2Hk |m⟩ ⟨m| ∂1Hk |n⟩

[εn(k)− εm(k)]2
,

where we write |n⟩ = |unk⟩ for short1. Here we consider an insulator and the energy is defined
with respect to the Fermi level. Thus n runs over filled bands and m runs over empty bands,
and the integral runs over the entire Brillouin zone (BZ). The cell-periodic Bloch functions |unk⟩
are eigenstates of the Bloch Hamiltonian:

Hk = e−ik·rHeik·r, H =
p2

2m
+ V (r),

with V (r) the crystal potential. Hence,

⟨n| ∂Hk |m⟩ = (εm − εn) ⟨n| ∂m⟩,

where |∂m⟩ = ∂ |m⟩. The Hall conductivity then becomes

σH =
ie2

2πh

∑
εn<0<εm

∫
BZ

d2k (⟨∂1n|m⟩ ⟨m| ∂2n⟩ − ⟨∂2n|m⟩ ⟨m| ∂1n⟩) , (1)

where we used
∂ ⟨n|m⟩ = 0 ⇒ ⟨n| ∂m⟩ = −⟨∂n|m⟩, (2)

since the |unk⟩ for different band indices and fixed k are orthogonal. Note that the summand
in Eq. (1) is asymmetric in n and m:

⟨∂1n|m⟩ ⟨m| ∂2n⟩ − ⟨∂2n|m⟩ ⟨m| ∂1n⟩ = − (⟨∂1m|n⟩ ⟨n| ∂2m⟩ − ⟨∂2m|n⟩ ⟨n| ∂1m⟩) ,

making use of Eq. (2) and swapping the overlaps in each term. Thus, we can let m run over all
eigenstates, because the extra terms, with n and m both running over occupied bands, cancel
pairwise. Using the completeness relation,∑

m

|umk⟩ ⟨umk| = 1,

we find

σH =
ie2

2πh

∑
εn<0

∫
BZ

d2k (⟨∂1n| ∂2n⟩ − ⟨∂2n| ∂1n⟩)

=
ie2

2πh

∑
εn<0

∫
BZ

d2k

∫
unit cell

d2r

(
∂u∗n
∂k1

∂un
∂k2

− ∂u∗n
∂k2

∂un
∂k1

)
,

1Here, overlaps such as ⟨n|∂Hk|m⟩ correspond to a real-space integral over the unit cell for a continuum theory,
and a sum over sublattices and orbitals in a lattice model: r ↔ sublattice index.
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which recovers the result of the paper. Note that for a lattice model, the integral over the unit
cell is replaced with a summation over sublattices and orbitals. This result can be written as

σH =
e2

2πh

∫
BZ

d2kF12,

where F12 is the ground-state Berry curvature,

F12 = i
∑
εn<0

(⟨∂1n| ∂2n⟩ − ⟨∂2n| ∂1n⟩) .

2 Quantization of the Hall conductivity

In the original TKNN paper, it was not clearly demonstrated (in my opinion) why the Hall
conductivity is quantized. It was only clarified in a follow-up paper by Kohmoto [2]. To show
this, we consider a single isolated band. We first write

∂u∗

∂k1

∂u

∂k2
− ∂u∗

∂k2

∂u

∂k1
= ∇k × u∗∇ku,

where we define the curl of a two-dimensional vector as a pseudoscalar, so that

σH =
e2

2πh

∑
εn<0

∫
BZ

d2k∇k ×A.

where
A(k) = i ⟨u|∇k |u⟩ ,

is the Berry connection of a single band. Since the BZ has no boundary, Stokes’ theorem gives
σH = 0, naively. Hence, we are led to conclude that a nonzero value of σH implies that A(k)
is not smooth everywhere, so that Stokes’ theorem does not apply to the whole BZ. In this
case, there is no global smooth gauge for the Bloch state |uk⟩. Thus, for an insulator with a
finite value of σH , there always exist singularities somewhere in the BZ where the state vector
is undefined. An explicit example for a two-band system can be found in many references. For
example, see Section IV B of Ref. [3] for the Haldane model.

Now consider N − 1 patches Dn ∈ T 2 (n = 1, . . . , N − 1) of the BZ torus that do not overlap
and their complement DN = T 2−∪nDn. For each patch Dn, there exists a gauge that is smooth
in Dn. These gauges are related by a gauge transformation:

|un⟩ = e−iχn(k) |uN ⟩ ,

where the subscript now refers to different patches. Here, the phase factor χn(k) also has to
contain singularities, which move singularities of the gauge |uN ⟩ outside of Dn. The Berry
connection transforms as

An = i ⟨un| ∇k |un⟩ = AN +∇kχn,

so that ∇kχn acts as a transition function2. In each patch, the Berry connection (in the smooth
gauge for that patch) is well behaved by definition, so we can use Stokes’ theorem:∫

T 2

d2k∇k ×A =

N−1∑
n=1

∫
Dn

d2k∇k ×An +

∫
DN

d2k∇k ×AN

=
N−1∑
n=1

∮
∂Dn

dk · (An −AN ) ,

2For a more mathematical perspective accessible to physicists, see the discussion of the Wu-Yang monopole in
Nakahara’s Geometry, Topology and Physics: Section 1.9.2 [4].
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where in the first step we used that the Berry curvature is gauge invariant, and where ∂Dn is the
boundary of region Dn with ∂DN = − ∪n ∂Dn where the sign indicates that the orientation of
the boundary is opposite. Hence, the Hall conductivity (of an isolated band) can be expressed
in terms of the winding number of the gauge transformation around the boundary:

σH =
e2

2πh

∑
n

∮
∂Dn

dk · ∇kχn =
e2

h
ν,

where ν is an integer. The last equality follows from the fact that the cell-periodic Bloch function
in a given gauge is single valued. For example, for the topological phase of the Haldane model,
the BZ can be divided in two patches for which there exist smooth gauges, where one patch
contains the K point and the other one contains K ′.
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